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Abstract. We analyse properties of non-Hermitian matrices of sizeconstructed as square
submatrices of unitary (orthogonal) random matrices of dize- M, distributed according to

the Haar measure. In this way we define ensembles of random matrices and study the statistical
properties of the spectrum located inside the unit circle. In the limit of large matrices, this ensemble
is characterized by the ratid /N . For the truncated CUE we analytically derive the joint density

of eigenvalues and all correlation functions. In the strongly non-unitary case universal Ginibre
behaviour is found. FaN — M fixed andN to oo the universal resonance-width distribution with

N — M open channels is recovered.

1. Introduction

Random unitary matrices may be applied to describe chaotic scattering [1], conductance
in mesoscopic systems [2] or statistical properties of periodically driven quantum systems
(see [3] and references therein). They can be defined by circular ensembles of unitary matrices
introduced by Dyson [4]. He defined circular orthogonal, unitary or symplectic ensembles
(COE, CUE and CSE), which display different transformation properties [5]. For these
ensembles the distribution of matrix elements and their correlations are known [6-8].

In this paper we discuss properties of non-Hermitian matrices defined as square
submatrices of sizé/ of unitary (orthogonal) matrices of sizé, whereN > M. These
matrices may be considered as unitary (orthogonal) matricesNvithM bottom rows and
N — M last columns truncated. L&}y, ) denote such 3 x M matrix obtained from a unitary
matrix, while Oy is obtained by truncating an orthogonal matrix. The truncated matrices
are non-unitary by construction, and their eigenvalues are located inside the unit circle.

Motivation for such a study stems from the problems of chaotic scattering. Consider a
mesoscopic device coupled to two leads, each of which suppbi2sopen channels. The
process of scattering can be described by a unisargatrix of size N. In the diffusive
regime the scattering matrix pertains to an appropriate circular ensemble [2]. The reflection
(transmission) matrix of siz& = N /2 may just be considered as a truncation of the unifary
matrix. The random matrix approach to resonances in chaotic scattering was recently presented
in [9]. In particular, the distribution of width of resonance in the presende@fen channels
was derived in the weakly non-Hermitian limit for broken time-reversal symmetry.

In recent papers [10, 11] the authors introdw¢ex N unitary matrices enlarged in an
asymmetric way to the sizgV + L) x (N + L) by addingL upperrows andL last columns
with all elements equal to zero. These matrices are used to describe the chaotic scattering in
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a 1D crystal electron model in ac and dc fields. It is easy to see that the spectrum of such an
enlargedmatrix consists of 2 zeros and = N — L complex eigenvalues of theuncated

matrix Uy, v—r)- Our results are therefore directly applicable to the problems analysed in
those papers.

Related problems arise by analysing the time evolution of periodically perturbed systems.
The model of the kicked rotator with absorbing boundaries was studied in [12—14]. In this case
the presence of the absorbing boundaries corresponds to the truncation of the infinite evolution
matrix. Another line of research is related to the Frobenius—Perron (FP) operators describing
the evolution of densities under a classical map. If the map is area preserving, the FP operator
is represented by an infinite unitary matrix, which for practical purposes is truncated to a finite
size. Properties of the spectra of such truncated matrices have recently attracted considerable
attention [15, 16].

This paper is organized as follows. In section 2 we analyse truncations of orthogonal
matrices and show a geometric interpretation of this problem. We derive the probability
distributions of the radii of points uniformly covering a given hypersphere and projected
into a smaller space. Section 3 is devoted to truncations of random unitary matrices. We
demonstrate a link between the distributions studied and the eigenvector statistics. In section 4
we present numerical results concerning the distribution of the complex eigenvalues of the
truncated matrices. We show to what extent the ratiee M/N determines the properties
of the truncated matrix. In section 5 we analytically derive the joint density of eigenvalues
for truncated matrices of CUE. From this a kernel is derived which determines all correlation
functions. Inparticular, the averaged density of eigenvalues is obtained for arbitrary dimensions
and truncations. In the strongly non-unitary limft — oo, N /M fixedthe correlations of the
Ginibre ensemble [24] are obtained rescaled by the local mean level distance, which are thus
revealed as universal. The weakly non-unitary litdit- M fixed andM to co recovers the
universal distribution of resonance widths in the weakly non-Hermitian case for broken time-
reversal symmetry [9] and the corresponding correlations [29]. The truncations of symmetric
matrices of COE are briefly discussed in section 6. The convolution properties of the derived
distributions are presented in the appendix.

2. Submatrices of random orthogonal matrices

Let us start the discussion by considering a simple geometric exercise. Random points
uniformly cover a hyperspher&"—! of radius 1 embedded iR". After an orthogonal
projection intoRY, whereM < N, they are localized inside the hypersphé&fé—! or at
its surface. What is the radial probability distributi®w (), wherer denotes the distance
of a projected point from the origin?

It is helpful to analyse first the most intuitive caSe= 3, M = 2. The surface element
of the spheres? in spherical coordinates read€g = sind dd d¢. The orthogonal projection
maps the points of the sphere into a plane. Their distance from the origia &n6, which
allows us to find the required distribution

P3,2(t) = (l)

21— 12

Analogously we geP3 1(r) = 1 forr € [0, 1] and P>1(t) = 1/(2r /1 — 12).
The general formula foPy_ () may be obtained in a similar way from the element of
the hyperspherg™—1:

dQy_1 = dpTIY 2 sint 6, dé;. 2)
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Figure 1. (a) Probability distribution of the radit after projection fromr6 to R with
M = 1,2,4,8,15. The variable? is equal to the sum oM squared elements of a random
orthogonal matrix distributed according to the Haar measu@@®). (b) Analogous distributions
P"(r) obtained from random unitary matrices pertaining/tcL6).

Integrating outv — M variables we obtain

Py () = e ™LA — B N-M-2172 -
where the normalization constant can be expressed by the Euler beta fuBictioy) [17]
2 2r (%)
T B T TR @
B 5 TG

Convolution relations between the distributiab$ ,,(¢) are demonstrated in the appendix.
Consider an orthogonal matri of sizeN. Its first column can be interpreted as a vector

x; = Oy of coordinates determining a point on the hyperspisére!. Let us call byOpy i

the upper left submatrix a® of sizeM < N. The total length of the vector represented by the

first column ofOpy 4 and given by = /"L, x2 is just equal to the defined above distance

of a point projected from the hypersphes®-1 into the interior ofS¥~1 from the origin. If
O are distributed uniformly with respect to the Haar measuredg@), than the points:
uniformly cover the hypersphere. The distributia?s,, (¢) are then given by equation (3).

Figure 16) shows these distributions fo¥ = 16 andM = 1,2, 4,8 and 15. With
increasingV the probability distribution is shifted to the right. Ftr = N the matrix remains
unitary andPy (t) = 8(t — 1). Let us now consider an ensemldly , ) by increasing the
dimensionV and keeping the rati@ = M/N fixed, whereu < 1. Straightforward integration
allows us to compute the expectation value &r this ensemble:

F(Prig +3)

r+Hred

®)

<t>N,H.N =

which in the limit N — oo tends to,/ix. The second moment readé)N,MN = u, thus the
variance tends to zero in the limit of large matrices. This result is quite intuitive in view of the
central limit theorem.

3. Submatrices of random unitary matrices

Let Uy, i) denote thel, x M matrix obtained by truncation of th€ x N unitary matrixU.
In a similar way we define = /3¢, |Ui1|2. In this case, to find the distributioRy ()
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it is useful to represent a unitary matrix(N) as a product (the normal product) or the
twisted productx)) of the hyperspheres [18]

UN) ~ St x 83 - x §2V73 i §2V-1, (6)

Truncation of the dimension of a unitary matrix by one corresponds to the projection from
§2NV=1 10 §2V=3 which is equivalent to the truncation of the matéx2N) by two. The same
argument works for any siz# of the truncated matrix. Therefod ,,(t) = P35 ,,(t) and

Py () = conomt®™ 1L — 12N (7)

with the normalization constants given by (4). Some of these distribution¥ fer 16 are
plotted in figure 1if). Expectation valueg) are asymptotically the same for both ensembles,
while the variance is smaller for the ensemble of truncated unitary matiiges.

For a fixed value ofv we defined the ensembles of truncated matrices for each integer
value of M € [1, N]. However, to study the evolution of a spectrum of a given matrix it is
convenient to define an ensemble depending on a continuous parameter. This can be achieved
in several different ways. For example, one may multiply the last column and the last vector
of the matrixUpy ) by a parametep < [0, 1], which mimics a continuous transition fromf
toM — 1[16].

Taking M = 1 the variable is just the absolute value of the first element of a matrix
|U11]. Itis known [5, 19] that a unitary matrix of eigenvectors of a CUE matrix is distributed
according to the Haar measure biN), while the orthogonal matrix of eigenvectors of a
matrix typical of COE is distributed according to the Haar measur® @i). To establish a
link with the eigenvector statistics let us 9ét= 1 and consider the distributior; , (r) and
Py (1) = Py ,(1). Puttingy = 72 and changing the variable we arrive at the known formulae

L3 @A-y™3r

rézhy

Py (y) = (8)

and
Py(y) =(N-DL—-y"? ©)

which describe the eigenvector statistics for the orthogonal and the unitary ensemble [20, 21].
In the limit N — oo they converge to thg? distributions with the number of degrees of
freedomv equal to 1 and 2, respectively. The former case is often known in the literature as
the Porter—Thomas distribution.

4. Distribution of eigenvalues

Consider spectra of the truncated orthogonal matr@gs,, and truncated unitary matrices
Uin,m- In both cases there exisf complex eigenvalues; = r; exp(ig;) localized inside (or
at) the unit circle. This is due to the fact that the norm of the truncation is smaller than or equal
to the norm of the initial matrix. For the truncations of random matrices of CUE there exist an
rotational symmetryi/ — U exp(i). Therefore,P(¢) = const, consequently we will study
the radial distributionP (). Sometimes it is convenient to write= e~7/2 and to study the
distributionP (y) of the ‘level widths’y [12]. For any fixedV the limiting cases are known: for
M = 1theeigenvalues are trivial = r, so for both ensemblgdy 1 (r) = Py 1(t). FOrM = N
the matrix is unitary and thuBy y (r) = 8(r — 1) or, in other variablesPy y(y) = 8(y).

Figure 2 presents 2000 eigenvalues of the matrices truncated out of CUE matrices of size 5.
For M = 4 there exist several eigenvalues close to the unit circle, while for stronger truncation
(M = 2) the eigenvalues are clustered closer to the origin.
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Figure 2. Complex eigenvalues of random matrices pertaining to the ensen#)|égs(s and

(b) Ups.2).

25 25

u @] u ()

P (), P, |
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~

Figure 3. Distribution of decay times(y) for random matrices pertaining to the ensembles
(@) Uz 2 and 0) Us 4]

In the simplest interesting cas¥,= 3 andM = 2, the data for the truncations of unitary
matrices conform to the distributiafy',(r) = r + 2r3. For comparison with the results of [12]
we present the numerical data as the distribuftgp). The above distribution, derived in the
following section, corresponds to the biexponential decay

PY,(y) = 3 exp(—y) + exp(—2y) (10)

represented by a solid curve in figureaB(Numerical data obtained for the ensemblg 4;,
shown in figure 3), are compared with the distributia®f', () = 7 exp(—y) +3 exp(—2y) +
% exp(—3y) + exp(—4y), which corresponds t&; ,() discussed below.

DistributionsP (r) for both ensembles obtained with= 16 and some intermediate values
of M are presented in figure 4. The histograms are performed outofab@om unitary
(orthogonal) matrices constructed according to the algorithm given in [22]t. The statistics

T In[22] a misprint occurred in the algorithm for generating random matrices typical of CUE. The corrected version
(the indices in appendix B changed according te- r + 1) can be found in [23].
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Figure 4. (a) Probability distribution of the radii of the complex eigenvalues of tié x M sub-
blocks of random matrices ab(16). (b) Analogous distributions®“ (r) obtained from random
unitary matrices pertaining to (16).

obtained do not depend on which columns and rows of the initially unitary (orthogonal) matrix
are removed during the truncation. This is due to the fact that the Haar measure on the unitary
(or orthogonal) group is invariant with respect to multiplication by the permutation matrices,
which change the order of the columns and vectors.

With increase oMM the distributionP (r) extends to the larger values:ofin contrast with
the distributionsP (¢), for any M there exists a non-zero probability of finding small values of
r. For small values the distributionP" (r) grows linearly withr. This is a purely geometric
factor (we analyse the distribution at the complex plane), which corresponds to the uniform
density of eigenvalues close to the origin.

The data collected for large matrices reveal a scaling behaviour: the distriatignr)
dependsonly ontheratjo= M/N. Figure 5 shows the distribution; ; ,(r) andPy  4(r)
obtained from ensembles of random unitary matrices of different sizes. The larger value of
the sharper is the cut-off of the probability at the critical radius= ,/x. In analogy to the
properties of the Ginibre ensemble one expects an infinitely sharp edge of the distribution in
the limit N — oo. In the case of large matrices the spectrum covers the entire circle of radius
ru,» While the density is largest close to the rim.

Foru <« 1 (andN large) the radial distribution may be approximated by a linear function
P} (r) ~ 2r/p withacut-offatr,. This property is characteristic of the Ginibre ensemble [24],
constructed of non-Hermitian random matrices with no correlations between their elements.
It is thus intuitive to expect, that for larg€ the constraints stemming from the unitarity of
U (N) do not induce very strong correlations between elements of a much smaller matrix of
sizeM.

Eigenvalues of several truncations of random orthogonal matrices are shown in figure 6.
Since the truncated matrix is real the eigenvalues are real or appear in complex conjugate
pairs,ré?, re"'. Therefore these spectra exhibit the symmetry along the real line. One can
observe a clustering of eigenvalues along this line. The fraction of real eigenvalues equals
approximately (65, 038 and 068 for the ensemble®[s 5}, Ops.4) and Oys o, respectively.

This fact explains a positive probabili§’ (r) for » = 0 visible in figure 44).

If the ratio i is kept constant, the relative number of real eigenvalues decreases with the
matrix size. A similar effectis known in the theory of random polynomials. Kac considered the
random polynomials of orde¥ with real coefficients, being independent random variables
drawn according to the normal distribution. He showed [25] that the fraction of real roots
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Figure 5. Probability distributionP" () of radii of eigenvalues of matriced|y, 5 constructed
from unitary matrices of siz&/ = 16(¢), 64(2), 256(0) and 1024(J) with (a) M = N/4 and
(b) M = N /2. Dashed lines represent the asymptotic cut-offatr,, and the solid curves denote
the distribution (19).

Figure 6. As in figure 2 for truncations of random orthogonal matric@s@s 4; and ) Os 2;.
Note clustering of eigenvalues at the real axis.

decreases agn M)/M. Our problem is not exactly the same since the real coefficients of
the secular polynomial of the truncated random matrix are not Gaussian, nor independent
random variables. In spite of this fact, our numerical results suggest that the fraction of the
real eigenvalues of truncations of orthogonal matriogs, » decreases agn(M)/M). A

recent discussion of properties of random polynomials and their applications to quantum chaos
may be found in [26]. The issue of clustering of zeros of random polynomials along a given
curve and its relation to the time-reversal symmetry is discussed in [27].

In the limit of large matrices the relative strength of the clustering of the complex
eigenvalues along the real axis decreases and the distrib&tign becomes uniform.
Moreover, the radial distributio®’(r) becomes close to the distribution (19) derived for
truncations of unitary matrices. Although fr = 16 the differences between the distributions
P (r) and Py (r) are significant, especially for small valuesrofor largeN the data for both
ensembles seem to converge.
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5. Analytical results for truncations of CUE

Now we derive analytical results for the truncated circular unitary ensemble. Let

A B
v=(e 5)
be anN x N matrix from this ensemble ardl a subunitary x M matrix. The joint density
of elements ot/ can be written as

P(U) x8(ATA+CTCc —1)8(ATB+CTD)s(B'B+D'D — 1) (11)

with appropriate matriX-functions. Integrating ouB and D we obtain as joint density of
elements ofA

P(A) x / dcs(ATA+cTc - 1) (12)

with a 2M (N — M)-dimensional integration over the complex parame€ersrhe matrixA
may be brought to upper triangular form by a unitary transformafiodt = T (z + A)T %,
wherez is a diagonal matrix consisting of the complex eigenvalued @nd A is strictly
upper triangular (Schur decomposition). The transformation can be made unique restricting
T to a certain cosetspace. The Jacobian of this transformation is given by the square of the
Vandermonde determinant [28]

VP =]]lz —z?

i<j

such that after integrating out the unitary transformatifribe joint density of eigenvalues is
given by

P(z) x |V|2/dc/dA3((zT+AT)(Z+A)+CTC — 1. (13)

In the following we first integrate out th& (M — 1)/2 complex parameters;; and then the
M(N — M) complex parameter§ written as complex vectors;. Fori < j we have the
hierarchical equations
D+ CICi+ Y AfAy =0, (14)
k<i

Integration overA yields the Jacobiaﬁ[k]. |z:|~2 and a product oé-functions:

[[s0z1?+C/x:Ci — 1) (15)

whereX; denotes aiN — M) x (N — M) matrix defined by the quadratic forﬁ’)TX,- C; which
is given by
CITC, + Z AZiAki
k<i
containing the solutiom\;; of equation (14) and depending otherwise@nonly for k < i.
The integration ove€; can now be done successively starting fropa and yields the factor
M

[Ja—- 1zt ol - |2/ det X))
i=1
where®(.) denotes the Heaviside step functiéix) = 1 for x > 0 and zero otherwise.
For detX;) we can derive from the equations (14) far and using implicitly thes-
functions (15) the recursive relation

det(X;41) = det(X;)/|z]?
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with det(X;) = 1. Thus the previous Jacobiﬂ|i<j |z:|~2 will be compensated and the final
very simple and important result is

1..M M
P@ o [l =P [Ja—laP¥ M roa—jup. (16)
i<j i=1

This result is completely analogous to the Ginibre ensemble and we immediately know all the
correlation functions by the method of orthogonal polynomials [5]. Here the paetsire
already orthogonal. An equivalent method is to consider the joint deAsifyas the absolute
square of a Slater determinant of normalized wavefunctions

$(2) = 2" w1213 /v/Na
with
wx) = (1—x)NM-D2g1— x)

whereN,, stands for an normalization factor.
The kernel, which determines all correlation functions is [5, 28]

M
K(z1,23) = Y _(z125)" M w(lzalPw(|z2|?)/ Ny
n=1

For example, the cluster function is givenBbyz1, z2) = |K (z1, z§)|2 and the averaged density
of eigenvalueg normalized to 1 is given by

1 M
p@) =K@ o)M= -3 [ Pw(z2)/N,. (17)
n=1

The normalization factoN, is easily calculated as
No=ain—DI(N-M—-D!/(N—-M+n—-21".

For example, with-? = |z|? we obtain for the distribution afwith M = N — 1
2
P(r) = (r+ 23+ 3%+ .+ MrAMTY

and in general withr = r2
2 A=V ML g\ - i)
- M (N-M—1! \dx 1—x

There are two important limiting cases for laryg w = M/N fixedandL = N — M
fixed. For fixedu andM to co we find the mentioned scaling behaviour:

1 2r

P =\—--1)—- 19
" (u ) (1- 122 (19)

forr? < pandP(r) = 0 otherwise. The distribution shows a gap near the unit circle. This gap

resembles the one obtained for resonances in the chaotic scattering problem for large number

of channels [30]. In this strongly non-unitary limit we are also able to simplify the cluster
function:

P(r) (18)

Y(z,z+8) = (Mp(2))? exp(— Mp(2) |81%) (20)

which is just the Ginibre behaviour [5, 23] with the distadgescaled by the local mean level
distance ¥./Mp(z) given by equation (19) through(z) = P(r)/2nr. The same can be
shown for the nearest-neighbour distance distribution obtained by @t@bg32] and applied
to a damped chaotic kicked top.
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Figure 7. Probability distributionsd) P(r) and @) P (r) for complex symmetric matrice&|1e,
with M = 2, 4, 8, 15.

Inthe other limit of fixed. = N —M andM to oo, which may be considered as weakly non-
unitary, we recover exactly the universal resonance-width distribution [9] for perfect coupling
to L channels withy = N(1 —r)

B yL—l -d L 1— e—2y
p(y) = ] <E> 2 (21)

Similarly, the cluster function obtained in this limit can be shown to coincide with the one
obtained by Fyodorov and Khoruzhenko [29] for chaotic scattering with a finite number
of perfectly coupled channels. The statistics (21) has also been found by Kottos and
Smilansky [33] for chaotic scattering on graphs and bijidRlet al [10, 11] for a model

of crystal electron in the presence of dc and ac fields. In both of these worl§srttadrix is
reduced to the resolvent of a subunitary matrix as is investigated in this paper.

6. Submatrices of unitary symmetric matrices

For several applications one uses symmetric unitary matrices typical for the circular orthogonal
ensemble. This case is relevant if the physical system possesses time-reversal symmetry, or
any generalized anti-unitary symmetry [3]. Léthe a random unitary matrix typical of CUE.
It is easy to prove that the symmetric matik:= UU7 is typical to COE [5]. We shall thus
define the ensemble of truncated symmetric unitary matiggs,,;. In the definition of this
ensemble the position of the submatrix is crucial. We take the left upper part of the symmetric
matrix W, thus the truncated matricé§y ,; are symmetric.

The distributionsP (¢) andP (r) for the symmetric matrices generated out of COE matrices
of size N = 16 are shown in figure 7. Each plot contains data frorhsh®nmetric random
unitary matrices. Note the differences between these figures and the corresponding data for
orthogonal and unitary matrices presented in figures 1 and 4. If the truncation of the matrix
W is performed asymmetrically (e.g. we take the lower left submatrix), the distrib&tion
becomes closer to that corresponding to the truncations of random unitary méincgs

In the asymptotic limit the properties of the ensemble of the truncations of symmetric
matricesWy ) depends on the same scaling paramgter M /N. Moreover, the distribution
P(r) becomes close to the corresponding one for the unitary ensemble described by the
distribution (19). Therefore we may conjecture that the distributipfr), which describes the
distribution of moduli of eigenvalues of truncated matrices in the limit of la¥geés universal
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and does not depend on the initial ensemble of random matrices, praWid¥ds fixed. This
corresponds to results for resonances in the limit AV fixed andN to oo [30]. In contrast,
there are differences to be expected in the limit of weakly non-unitary mati¢esM fixed
andM to oo [29, 31].

7. Concluding remarks

Three families of ensembles of random matrices are proposed. They are defined by cutting
an M-dimensional submatrix of an initiallw-dimensional unitary matrix, pertaining to a
given ensemble of unitary, unitary symmetric or orthogonal matrices. Using a link between
the truncation of an orthogonal matrix and the projection of a hypersphere into a smaller
dimensional space we found the probability distributions of the lengibisthe projected
vectors.

Truncated matrices are not unitary and their complex eigenvalues are located inside the
unit circle. We derived an analytical formula for the distributi®-) of moduli of eigenvalues
of truncations of the CUE matrices. It takes a particularly simple form for small values of
N and M. In the asymptotic limitN — oo this distribution depends only on the scaling
parametep, = M/N, providedM/N is not very close to 1. For smallthe distributionP,, (r)
grows linearly, later displays a nonlinear behaviour and eventually suffers a sudden cut-off
atr, = ./u. ForN > 1 the probability distributionP (r) does not depend on whether the
initial matrices are orthogonal, unitary or unitary symmetric—again, provided1liat is not
very close to 1. In this strongly non-unitary limit, at least for the case of broken time reversal,
symmetry correlations are shown to coincide with those obtained from the Ginibre ensemble of
general complex matrices, provided distances are rescaled by the local mean level distance. In
the weakly non-unitary limitv — M fixed andM to oo, once again, the eigenvalue distribution
for broken time-reversal symmetry is shown to coincide with the universal resonance widths
distribution in the weakly non-Hermitian limit. The same is true for the two-point cluster
function.
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Appendix A. Convolution properties of the distributions P(t)

In this appendix we demonstrate the convolution properties of the distributippsr) which

might be used to derive the formula (3). We start thus with a random orthogonal matrix
O(N) or with random points covering uniformly the hypersph&fe? of radius 1. Their
distribution in the polar coordinates is given by equation (2). For simplicity we will denote
the distance from the origin of a point projected iR by ¢y 5. It is just the argument of

the distributionPy,,,(r). Due to the definition of the polar coordinatgsy_1 = sinfy_o,

Iy N—2 = SiNOy_2SiNOy_3, ..., andty 1 = coSHy_,. Therefore all variablesy ,, may be
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rewritten as the product consistingbf= N — M factors
N—-M
INM = l_[ IN—k+1,N—k- (A1)
k=1
This factorization allows us to find the distributions (3).

Probability distribution of a sum of two independent random variablesx + y is given
by the standard convolutiofi, o P, := P(z) = ffooo Py (x)Py(z — x) dx. In a similar way,
the distribution of the product of two independent random variahles,xy, is given by the
product convolution

! 1
Pox P, i= P(z) = / P, (x)P, (;Z?) o (A.2)

In the general case the integration should be performed over the entire real axis, but in our case
the integration is restricted te,[1], since all argumentse [0, 1].

Factorization (A.1) allows us to write convolution relations between probability
distributionsPy,,, (¢). For example

P3y(t) = Py » Py (A.3)

P (1) = Piy* PS, (A.4)

Pp(t) = Pjyx P3,x PJy. (A.5)
In general, we obtain a convolution relation

Pym(®) =Py y a* Py_ay o* - * Py y (A.6)

which might be used to derive formula (3).
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