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Abstract. We analyse properties of non-Hermitian matrices of sizeM constructed as square
submatrices of unitary (orthogonal) random matrices of sizeN > M, distributed according to
the Haar measure. In this way we define ensembles of random matrices and study the statistical
properties of the spectrum located inside the unit circle. In the limit of large matrices, this ensemble
is characterized by the ratioM/N . For the truncated CUE we analytically derive the joint density
of eigenvalues and all correlation functions. In the strongly non-unitary case universal Ginibre
behaviour is found. ForN −M fixed andN to∞ the universal resonance-width distribution with
N −M open channels is recovered.

1. Introduction

Random unitary matrices may be applied to describe chaotic scattering [1], conductance
in mesoscopic systems [2] or statistical properties of periodically driven quantum systems
(see [3] and references therein). They can be defined by circular ensembles of unitary matrices
introduced by Dyson [4]. He defined circular orthogonal, unitary or symplectic ensembles
(COE, CUE and CSE), which display different transformation properties [5]. For these
ensembles the distribution of matrix elements and their correlations are known [6–8].

In this paper we discuss properties of non-Hermitian matrices defined as square
submatrices of sizeM of unitary (orthogonal) matrices of sizeN , whereN > M. These
matrices may be considered as unitary (orthogonal) matrices withN −M bottom rows and
N−M last columns truncated. LetU[N,M] denote such aM×M matrix obtained from a unitary
matrix, whileO[N,M] is obtained by truncating an orthogonal matrix. The truncated matrices
are non-unitary by construction, and their eigenvalues are located inside the unit circle.

Motivation for such a study stems from the problems of chaotic scattering. Consider a
mesoscopic device coupled to two leads, each of which supportsN/2 open channels. The
process of scattering can be described by a unitaryS-matrix of sizeN . In the diffusive
regime the scattering matrix pertains to an appropriate circular ensemble [2]. The reflection
(transmission) matrix of sizeM = N/2 may just be considered as a truncation of the unitaryS-
matrix. The random matrix approach to resonances in chaotic scattering was recently presented
in [9]. In particular, the distribution of width of resonance in the presence ofL open channels
was derived in the weakly non-Hermitian limit for broken time-reversal symmetry.

In recent papers [10, 11] the authors introduceN × N unitary matrices enlarged in an
asymmetric way to the size(N + L)× (N + L) by addingL upperrows andL last columns
with all elements equal to zero. These matrices are used to describe the chaotic scattering in
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a 1D crystal electron model in ac and dc fields. It is easy to see that the spectrum of such an
enlargedmatrix consists of 2L zeros andM = N − L complex eigenvalues of thetruncated
matrix U[N,N−L] . Our results are therefore directly applicable to the problems analysed in
those papers.

Related problems arise by analysing the time evolution of periodically perturbed systems.
The model of the kicked rotator with absorbing boundaries was studied in [12–14]. In this case
the presence of the absorbing boundaries corresponds to the truncation of the infinite evolution
matrix. Another line of research is related to the Frobenius–Perron (FP) operators describing
the evolution of densities under a classical map. If the map is area preserving, the FP operator
is represented by an infinite unitary matrix, which for practical purposes is truncated to a finite
size. Properties of the spectra of such truncated matrices have recently attracted considerable
attention [15,16].

This paper is organized as follows. In section 2 we analyse truncations of orthogonal
matrices and show a geometric interpretation of this problem. We derive the probability
distributions of the radii of points uniformly covering a given hypersphere and projected
into a smaller space. Section 3 is devoted to truncations of random unitary matrices. We
demonstrate a link between the distributions studied and the eigenvector statistics. In section 4
we present numerical results concerning the distribution of the complex eigenvalues of the
truncated matrices. We show to what extent the ratioµ = M/N determines the properties
of the truncated matrix. In section 5 we analytically derive the joint density of eigenvalues
for truncated matrices of CUE. From this a kernel is derived which determines all correlation
functions. In particular, the averaged density of eigenvalues is obtained for arbitrary dimensions
and truncations. In the strongly non-unitary limitM →∞,N/M fixedthe correlations of the
Ginibre ensemble [24] are obtained rescaled by the local mean level distance, which are thus
revealed as universal. The weakly non-unitary limitN −M fixed andM to∞ recovers the
universal distribution of resonance widths in the weakly non-Hermitian case for broken time-
reversal symmetry [9] and the corresponding correlations [29]. The truncations of symmetric
matrices of COE are briefly discussed in section 6. The convolution properties of the derived
distributions are presented in the appendix.

2. Submatrices of random orthogonal matrices

Let us start the discussion by considering a simple geometric exercise. Random points
uniformly cover a hypersphereSN−1 of radius 1 embedded inRN . After an orthogonal
projection intoRM , whereM < N , they are localized inside the hypersphereSM−1 or at
its surface. What is the radial probability distributionPN,M(t), wheret denotes the distance
of a projected point from the origin?

It is helpful to analyse first the most intuitive caseN = 3,M = 2. The surface element
of the sphereS2 in spherical coordinates reads d�2 = sinθ dθ dφ. The orthogonal projection
maps the points of the sphere into a plane. Their distance from the origin ist = sinθ , which
allows us to find the required distribution

P3,2(t) = t

2
√

1− t2 . (1)

Analogously we getP3,1(t) = 1 for t ∈ [0, 1] andP2,1(t) = 1/(2π
√

1− t2).
The general formula forPN,M(t) may be obtained in a similar way from the element of

the hypersphereSN−1:

d�N−1 = dϕ5N−2
k=1 sink θk dθk. (2)
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Figure 1. (a) Probability distribution of the radiit after projection fromR16 to RM with
M = 1, 2, 4, 8, 15. The variablet2 is equal to the sum ofM squared elements of a random
orthogonal matrix distributed according to the Haar measure onO(16). (b) Analogous distributions
Pu(t) obtained from random unitary matrices pertaining toU(16).

Integrating outN −M variables we obtain

P oN,M(t) = cN,MtM−1(1− t2)(N−M−2)/2 (3)

where the normalization constant can be expressed by the Euler beta functionB(x, y) [17]

cN,M = 2

B(M2 ,
N−M

2 )
= 20(N2 )

0(M2 )0(
N−M

2 )
. (4)

Convolution relations between the distributionsP oN,M(t) are demonstrated in the appendix.
Consider an orthogonal matrixO of sizeN . Its first column can be interpreted as a vector

xk = Ok1 of coordinates determining a point on the hypersphereSN−1. Let us call byO[N,M]

the upper left submatrix ofO of sizeM < N . The total length of the vector represented by the

first column ofO[N,M] and given byt =
√∑M

k=1 x
2
k is just equal to the defined above distance

of a point projected from the hypersphereSN−1 into the interior ofSM−1 from the origin. If
O are distributed uniformly with respect to the Haar measure onO(N), than the pointsx
uniformly cover the hypersphere. The distributionsP oN,M(t) are then given by equation (3).

Figure 1(a) shows these distributions forN = 16 andM = 1, 2, 4, 8 and 15. With
increasingM the probability distribution is shifted to the right. ForM = N the matrix remains
unitary andPN,N(t) = δ(t − 1). Let us now consider an ensembleO[N,µN ] by increasing the
dimensionN and keeping the ratioµ = M/N fixed, whereµ < 1. Straightforward integration
allows us to compute the expectation value oft for this ensemble:

〈t〉N,µN =
0(N2 )0(

µN

2 + 1
2)

0(N2 + 1
2)0(

µN

2 )
(5)

which in the limitN → ∞ tends to
√
µ. The second moment reads〈t2〉N,µN = µ, thus the

variance tends to zero in the limit of large matrices. This result is quite intuitive in view of the
central limit theorem.

3. Submatrices of random unitary matrices

LetU[N,M] denote theM ×M matrix obtained by truncation of theN ×N unitary matrixU .

In a similar way we definet =
√∑M

k=1 |Uk1|2. In this case, to find the distributionPuN,M(t)



2048 K Życzkowski and H-J Sommers

it is useful to represent a unitary matrixU(N) as a product (the normal product(×) or the
twisted product(n)) of the hyperspheres [18]

U(N) ∼ S1× S3n · · ·n S2N−3n S2N−1. (6)

Truncation of the dimension of a unitary matrix by one corresponds to the projection from
S2N−1 to S2N−3, which is equivalent to the truncation of the matrixO(2N) by two. The same
argument works for any sizeM of the truncated matrix. ThereforePuN,M(t) = P o2N,2M(t) and

PuN,M(t) = c2N,2Mt
2M−1(1− t2)N−M−1 (7)

with the normalization constants given by (4). Some of these distributions forN = 16 are
plotted in figure 1(b). Expectation values〈t〉 are asymptotically the same for both ensembles,
while the variance is smaller for the ensemble of truncated unitary matricesU[N,M] .

For a fixed value ofN we defined the ensembles of truncated matrices for each integer
value ofM ∈ [1, N ]. However, to study the evolution of a spectrum of a given matrix it is
convenient to define an ensemble depending on a continuous parameter. This can be achieved
in several different ways. For example, one may multiply the last column and the last vector
of the matrixU[N,M] by a parameterp ∈ [0, 1], which mimics a continuous transition fromM
toM − 1 [16].

TakingM = 1 the variablet is just the absolute value of the first element of a matrix
|U11|. It is known [5, 19] that a unitary matrix of eigenvectors of a CUE matrix is distributed
according to the Haar measure onU(N), while the orthogonal matrix of eigenvectors of a
matrix typical of COE is distributed according to the Haar measure onO(N). To establish a
link with the eigenvector statistics let us setM = 1 and consider the distributionsP oN,1(t) and
PuN,1(t) = P o2N,2(t). Puttingy = t2 and changing the variable we arrive at the known formulae

P oN(y) =
0(N2 )

0(N−1
2 )

(1− y)(N−3)/2

√
πy

(8)

and

PuN(y) = (N − 1)(1− y)N−2 (9)

which describe the eigenvector statistics for the orthogonal and the unitary ensemble [20,21].
In the limit N → ∞ they converge to theχ2

ν distributions with the number of degrees of
freedomν equal to 1 and 2, respectively. The former case is often known in the literature as
the Porter–Thomas distribution.

4. Distribution of eigenvalues

Consider spectra of the truncated orthogonal matricesO[N,M] and truncated unitary matrices
U[N,M] . In both cases there existM complex eigenvalueszj = rj exp(iφj ) localized inside (or
at) the unit circle. This is due to the fact that the norm of the truncation is smaller than or equal
to the norm of the initial matrix. For the truncations of random matrices of CUE there exist an
rotational symmetry,U → U exp(iα). Therefore,P(φ) = const, consequently we will study
the radial distributionP(r). Sometimes it is convenient to writer = e(−γ /2) and to study the
distributionP(γ )of the ‘level widths’γ [12]. For any fixedN the limiting cases are known: for
M = 1 the eigenvalues are trivial,r = t , so for both ensemblesPN,1(r) = PN,1(t). ForM = N
the matrix is unitary and thusPN,N(r) = δ(r − 1) or, in other variables,PN,N(γ ) = δ(γ ).

Figure 2 presents 2000 eigenvalues of the matrices truncated out of CUE matrices of size 5.
ForM = 4 there exist several eigenvalues close to the unit circle, while for stronger truncation
(M = 2) the eigenvalues are clustered closer to the origin.
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Figure 2. Complex eigenvalues of random matrices pertaining to the ensembles (a) U[5,4] and
(b) U[5,2].
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Figure 3. Distribution of decay timesP(γ ) for random matrices pertaining to the ensembles
(a) U[3,2] and (b) U[5,4].

In the simplest interesting case,N = 3 andM = 2, the data for the truncations of unitary
matrices conform to the distributionPu3,2(r) = r +2r3. For comparison with the results of [12]
we present the numerical data as the distributionP(γ ). The above distribution, derived in the
following section, corresponds to the biexponential decay

Pu3,2(γ ) = 1
2 exp(−γ ) + exp(−2γ ) (10)

represented by a solid curve in figure 3(a). Numerical data obtained for the ensembleU[5,4],
shown in figure 3(b), are compared with the distributionPu5,4(γ ) = 1

4 exp(−γ )+ 1
2 exp(−2γ )+

3
4 exp(−3γ ) + exp(−4γ ), which corresponds toPu5,4(r) discussed below.

DistributionsP(r) for both ensembles obtained withN = 16 and some intermediate values
of M are presented in figure 4. The histograms are performed out of 104 random unitary
(orthogonal) matrices constructed according to the algorithm given in [22]†. The statistics

† In [22] a misprint occurred in the algorithm for generating random matrices typical of CUE. The corrected version
(the indices in appendix B changed according tor → r + 1) can be found in [23].
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Figure 4. (a) Probability distribution of the radiir of the complex eigenvalues of theM ×M sub-
blocks of random matrices ofO(16). (b) Analogous distributionsPu(r) obtained from random
unitary matrices pertaining toU(16).

obtained do not depend on which columns and rows of the initially unitary (orthogonal) matrix
are removed during the truncation. This is due to the fact that the Haar measure on the unitary
(or orthogonal) group is invariant with respect to multiplication by the permutation matrices,
which change the order of the columns and vectors.

With increase ofM the distributionP(r) extends to the larger values ofr. In contrast with
the distributionsP(t), for anyM there exists a non-zero probability of finding small values of
r. For small valuesr the distributionPu(r) grows linearly withr. This is a purely geometric
factor (we analyse the distribution at the complex plane), which corresponds to the uniform
density of eigenvalues close to the origin.

The data collected for large matrices reveal a scaling behaviour: the distributionPN,M(r)

depends only on the ratioµ = M/N . Figure 5 shows the distributionsPuN,N/2(r) andPuN,N/4(r)
obtained from ensembles of random unitary matrices of different sizes. The larger value ofN ,
the sharper is the cut-off of the probability at the critical radiusrµ = √µ. In analogy to the
properties of the Ginibre ensemble one expects an infinitely sharp edge of the distribution in
the limitN →∞. In the case of large matrices the spectrum covers the entire circle of radius
rµ, while the density is largest close to the rim.

Forµ� 1 (andN large) the radial distribution may be approximated by a linear function
Puµ(r) ∼ 2r/µwith a cut-off atrµ. This property is characteristic of the Ginibre ensemble [24],
constructed of non-Hermitian random matrices with no correlations between their elements.
It is thus intuitive to expect, that for largeN the constraints stemming from the unitarity of
U(N) do not induce very strong correlations between elements of a much smaller matrix of
sizeM.

Eigenvalues of several truncations of random orthogonal matrices are shown in figure 6.
Since the truncated matrix is real the eigenvalues are real or appear in complex conjugate
pairs,reiφ , re−iφ . Therefore these spectra exhibit the symmetry along the real line. One can
observe a clustering of eigenvalues along this line. The fraction of real eigenvalues equals
approximately 0.65, 0.38 and 0.68 for the ensemblesO[3,2], O[5,4] andO[5,2], respectively.
This fact explains a positive probabilityP o(r) for r = 0 visible in figure 4(a).

If the ratioµ is kept constant, the relative number of real eigenvalues decreases with the
matrix size. A similar effect is known in the theory of random polynomials. Kac considered the
random polynomials of orderM with real coefficients, being independent random variables
drawn according to the normal distribution. He showed [25] that the fraction of real roots
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Figure 5. Probability distributionPu(r) of radii of eigenvalues of matricesU[N,M] constructed
from unitary matrices of sizeN = 16(♦), 64(4), 256(◦) and 1024(�) with (a) M = N/4 and
(b)M = N/2. Dashed lines represent the asymptotic cut-off atr = rµ and the solid curves denote
the distribution (19).
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Figure 6. As in figure 2 for truncations of random orthogonal matrices (a) O[5,4] and (b) O[5,2].
Note clustering of eigenvalues at the real axis.

decreases as(lnM)/M. Our problem is not exactly the same since the real coefficients of
the secular polynomial of the truncated random matrix are not Gaussian, nor independent
random variables. In spite of this fact, our numerical results suggest that the fraction of the
real eigenvalues of truncations of orthogonal matricesO[2M,M] decreases as(ln(M)/M). A
recent discussion of properties of random polynomials and their applications to quantum chaos
may be found in [26]. The issue of clustering of zeros of random polynomials along a given
curve and its relation to the time-reversal symmetry is discussed in [27].

In the limit of large matrices the relative strength of the clustering of the complex
eigenvalues along the real axis decreases and the distributionP(φ) becomes uniform.
Moreover, the radial distributionP o(r) becomes close to the distribution (19) derived for
truncations of unitary matrices. Although forN = 16 the differences between the distributions
P oµ(r) andPuµ(r) are significant, especially for small values ofr, for largeN the data for both
ensembles seem to converge.
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5. Analytical results for truncations of CUE

Now we derive analytical results for the truncated circular unitary ensemble. Let

U =
(
A B

C D

)
be anN ×N matrix from this ensemble andA a subunitaryM ×M matrix. The joint density
of elements ofU can be written as

P(U) ∝ δ(A†A +C†C − 1)δ(A†B +C†D)δ(B†B +D†D − 1) (11)

with appropriate matrixδ-functions. Integrating outB andD we obtain as joint density of
elements ofA

P(A) ∝
∫

dCδ(A†A +C†C − 1) (12)

with a 2M(N −M)-dimensional integration over the complex parametersC. The matrixA
may be brought to upper triangular form by a unitary transformationT : A = T (z +1)T −1,
wherez is a diagonal matrix consisting of the complex eigenvalues ofA and1 is strictly
upper triangular (Schur decomposition). The transformation can be made unique restricting
T to a certain cosetspace. The Jacobian of this transformation is given by the square of the
Vandermonde determinant [28]

|V |2 =
∏
i<j

|zi − zj |2

such that after integrating out the unitary transformationsT the joint density of eigenvalues is
given by

P(z) ∝ |V |2
∫

dC
∫

d1δ((z† +1†)(z +1) +C†C − 1). (13)

In the following we first integrate out theM(M − 1)/2 complex parameters1ij and then the
M(N −M) complex parametersC written as complex vectorsCi . For i < j we have the
hierarchical equations

z∗i 1ij +C†
i Cj +

∑
k<i

1∗ki1kj = 0. (14)

Integration over1 yields the Jacobian
∏
i<j |zi |−2 and a product ofδ-functions:∏

i

δ(|zi |2 +C†
i XiCi − 1) (15)

whereXi denotes an(N−M)× (N−M)matrix defined by the quadratic formC†
i XiCi which

is given by

C
†
i Ci +

∑
k<i

1∗ki1ki

containing the solution1ki of equation (14) and depending otherwise onCk only for k < i.
The integration overCi can now be done successively starting fromCM and yields the factor

M∏
i=1

(1− |zi |2)N−M−12(1− |zi |2)/ det(Xi)

where2(.) denotes the Heaviside step function,2(x) = 1 for x > 0 and zero otherwise.
For det(Xi) we can derive from the equations (14) for1, and using implicitly theδ-

functions (15) the recursive relation

det(Xi+1) = det(Xi)/|zi |2
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with det(X1) = 1. Thus the previous Jacobian
∏
i<j |zi |−2 will be compensated and the final

very simple and important result is

P(z) ∝
1...M∏
i<j

|zi − zj |2
M∏
i=1

(1− |zi |2)N−M−12(1− |zi |2). (16)

This result is completely analogous to the Ginibre ensemble and we immediately know all the
correlation functions by the method of orthogonal polynomials [5]. Here the powerszn−1 are
already orthogonal. An equivalent method is to consider the joint densityP(z) as the absolute
square of a Slater determinant of normalized wavefunctions

φn(z) = zn−1w(|z|2)/
√
Nn

with

w(x) = (1− x)(N−M−1)/22(1− x)
whereNn stands for an normalization factor.

The kernel, which determines all correlation functions is [5,28]

K(z1, z
∗
2) =

M∑
n=1

(z1z
∗
2)
n−1w(|z1|2)w(|z2|2)/Nn.

For example, the cluster function is given byY (z1, z2) = |K(z1, z
∗
2)|2 and the averaged density

of eigenvaluesz normalized to 1 is given by

ρ(z) = K(z, z∗)/M = 1

M

M∑
n=1

|z|2n−2w2(|z|2)/Nn. (17)

The normalization factorNn is easily calculated as

Nn = π(n− 1)!(N −M − 1)!/(N −M + n− 1)!.

For example, withr2 = |z|2 we obtain for the distribution ofr with M = N − 1

P(r) = 2

M
(r + 2r3 + 3r5 + · · · +Mr2M−1)

and in general withx = r2

P(r) = 2r

M

(1− x)N−M−1

(N −M − 1)!

(
d

dx

)N−M
(1− xN)

1− x . (18)

There are two important limiting cases for largeM: µ = M/N fixed andL = N −M
fixed. For fixedµ andM to∞ we find the mentioned scaling behaviour:

P(r) =
(

1

µ
− 1

)
2r

(1− r2)2
(19)

for r2 < µ andP(r) = 0 otherwise. The distribution shows a gap near the unit circle. This gap
resembles the one obtained for resonances in the chaotic scattering problem for large number
of channels [30]. In this strongly non-unitary limit we are also able to simplify the cluster
function:

Y (z, z + δ) = (Mρ(z))2 exp(−πMρ(z) |δ|2) (20)

which is just the Ginibre behaviour [5,23] with the distanceδ rescaled by the local mean level
distance 1/

√
Mρ(z) given by equation (19) throughρ(z) = P(r)/2πr. The same can be

shown for the nearest-neighbour distance distribution obtained by Grobeet al [32] and applied
to a damped chaotic kicked top.
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Figure 7. Probability distributions (a) P(t) and (b) P(r) for complex symmetric matricesW[16,M]
with M = 2, 4, 8, 15.

In the other limit of fixedL = N−M andM to∞, which may be considered as weakly non-
unitary, we recover exactly the universal resonance-width distribution [9] for perfect coupling
toL channels withy = N(1− r)

ρ(y) = yL−1

(L− 1)!

(−d

dy

)L 1− e−2y

2y
. (21)

Similarly, the cluster function obtained in this limit can be shown to coincide with the one
obtained by Fyodorov and Khoruzhenko [29] for chaotic scattering with a finite number
of perfectly coupled channels. The statistics (21) has also been found by Kottos and
Smilansky [33] for chaotic scattering on graphs and by Glück et al [10, 11] for a model
of crystal electron in the presence of dc and ac fields. In both of these works theS-matrix is
reduced to the resolvent of a subunitary matrix as is investigated in this paper.

6. Submatrices of unitary symmetric matrices

For several applications one uses symmetric unitary matrices typical for the circular orthogonal
ensemble. This case is relevant if the physical system possesses time-reversal symmetry, or
any generalized anti-unitary symmetry [3]. LetU be a random unitary matrix typical of CUE.
It is easy to prove that the symmetric matrixW := UUT is typical to COE [5]. We shall thus
define the ensemble of truncated symmetric unitary matricesW[N,M] . In the definition of this
ensemble the position of the submatrix is crucial. We take the left upper part of the symmetric
matrixW , thus the truncated matricesW[N,M] are symmetric.

The distributionsP(t)andP(r) for the symmetric matrices generated out of COE matrices
of sizeN = 16 are shown in figure 7. Each plot contains data from 104 symmetric random
unitary matrices. Note the differences between these figures and the corresponding data for
orthogonal and unitary matrices presented in figures 1 and 4. If the truncation of the matrix
W is performed asymmetrically (e.g. we take the lower left submatrix), the distributionP(r)

becomes closer to that corresponding to the truncations of random unitary matricesU[N,M] .
In the asymptotic limit the properties of the ensemble of the truncations of symmetric

matricesW[N,M] depends on the same scaling parameterµ = M/N . Moreover, the distribution
P(r) becomes close to the corresponding one for the unitary ensemble described by the
distribution (19). Therefore we may conjecture that the distributionPµ(r), which describes the
distribution of moduli of eigenvalues of truncated matrices in the limit of largeN , is universal
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and does not depend on the initial ensemble of random matrices, providedM/N is fixed. This
corresponds to results for resonances in the limit ofL/N fixed andN to∞ [30]. In contrast,
there are differences to be expected in the limit of weakly non-unitary matrices:N −M fixed
andM to∞ [29,31].

7. Concluding remarks

Three families of ensembles of random matrices are proposed. They are defined by cutting
anM-dimensional submatrix of an initiallyN -dimensional unitary matrix, pertaining to a
given ensemble of unitary, unitary symmetric or orthogonal matrices. Using a link between
the truncation of an orthogonal matrix and the projection of a hypersphere into a smaller
dimensional space we found the probability distributions of the lengthst of the projected
vectors.

Truncated matrices are not unitary and their complex eigenvalues are located inside the
unit circle. We derived an analytical formula for the distributionP(r) of moduli of eigenvalues
of truncations of the CUE matrices. It takes a particularly simple form for small values of
N andM. In the asymptotic limitN → ∞ this distribution depends only on the scaling
parameterµ = M/N , providedM/N is not very close to 1. For smallr the distributionPµ(r)
grows linearly, later displays a nonlinear behaviour and eventually suffers a sudden cut-off
at rµ = √µ. ForN � 1 the probability distributionP(r) does not depend on whether the
initial matrices are orthogonal, unitary or unitary symmetric—again, provided thatM/N is not
very close to 1. In this strongly non-unitary limit, at least for the case of broken time reversal,
symmetry correlations are shown to coincide with those obtained from the Ginibre ensemble of
general complex matrices, provided distances are rescaled by the local mean level distance. In
the weakly non-unitary limitN−M fixed andM to∞, once again, the eigenvalue distribution
for broken time-reversal symmetry is shown to coincide with the universal resonance widths
distribution in the weakly non-Hermitian limit. The same is true for the two-point cluster
function.
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Appendix A. Convolution properties of the distributions P (t)

In this appendix we demonstrate the convolution properties of the distributionsP oN,M(t)which
might be used to derive the formula (3). We start thus with a random orthogonal matrix
O(N) or with random points covering uniformly the hypersphereSN−1 of radius 1. Their
distribution in the polar coordinates is given by equation (2). For simplicity we will denote
the distance from the origin of a point projected intoRM by tN,M . It is just the argument of
the distributionP oNM(t). Due to the definition of the polar coordinatestN,N−1 = sinθN−2,
tN,N−2 = sinθN−2 sinθN−3, . . . , andtN,1 = cosθN−2. Therefore all variablestN,M may be
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rewritten as the product consisting ofL = N −M factors

tN,M =
N−M∏
k=1

tN−k+1,N−k. (A.1)

This factorization allows us to find the distributions (3).
Probability distribution of a sum of two independent random variablesz = x + y is given

by the standard convolutionPx ◦ Py := P(z) = ∫∞
−∞ Px(x)Py(z − x) dx. In a similar way,

the distribution of the product of two independent random variables,z = xy, is given by the
product convolution

Px ? Py := P(z) =
∫ 1

z

Px(x)Py

( z
x

) 1

|x| dx. (A.2)

In the general case the integration should be performed over the entire real axis, but in our case
the integration is restricted to [z, 1], since all argumentst ∈ [0, 1].

Factorization (A.1) allows us to write convolution relations between probability
distributionsP oNM(t). For example

P o31(t) = P o32 ? P
o
21 (A.3)

P o42(t) = P o43 ? P
o
32 (A.4)

P o41(t) = P o43 ? P
o
32 ? P

o
21. (A.5)

In general, we obtain a convolution relation

P oN,M(t) = P oN,N−1 ? P
o
N−1,N−2 ? · · · ? P oM+1,M (A.6)

which might be used to derive formula (3).
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